Document Generation
for Mendix

cMIXA

Table of contents

1 Document Generation for Mendix

1.1
1.2

Introduction

Prerequisites

2 Installation

2.1
2.2
2.3
2.4

2.5

2.6
2.7

Installing DocumentGenerationForMendix
Using the action SimpleMerge
Using the Java action AdvancedMerge

Setting up the MS Word template
inserting the merge field manually

Using the Document Generation for
Mendix MS Word addon

Generate a document via AdvancedMerge

Using the Java action AdvancedMergeXML

3 Howto's

Document Generation for Mendix

o o M A W W W

11

13
15
16
18

1 Document Generation for Mendix

1.1 Introduction

Document Generation for Mendix (further called DocGen) is a Mendix module that
generates output documents based on document templates. For example, if your
company uses a specially designed template for all kinds of correspondence the DocGen
module will allow you to use this template for your Mendix application document
output, so that the output document from your Mendix application matches the
corporate branding. The DocGen module is a powerful module for applications that
need to generate documents beyond the limitations of the built-in Mendix output
generator.

1.2 Prerequisites
Before importing the DocGen module, make sure that the following modules are part of
your Mendix application:

e MxModelReflection
e Approntolicencer
e CommunityCommons

These modules can be imported from the Mendix App Store. The following
documentation will provide information about importing modules in your Mendix
application: Import modules from downloaded packages or Import modules from the

App store.

Be aware to replace the documentgenerationformendix.jar when upgrading the Mendix
platform version (prevents possible java errors). Download the newest version from the
Appstore according to your Mendix platform version!

*note: to run the module in the cloud you will need a license. In development on your local
machine the module will run without a license. For a license please
contact sales.as.nl@emixa.com.

Document Generation for Mendix 3

https://docs.mendix.com/howto/integration/importing-and-exporting-objects
https://docs.mendix.com/community/app-store/use-app-store-content-in-the-modeler
https://docs.mendix.com/community/app-store/use-app-store-content-in-the-modeler
mailto:sales.as.nl@emixa.com

2 Installation

The module works with the following main concepts: the administrator configures
TemplateTypes. These template types are technical configurations linking Word merge
fields to actual data based on your domain model. The end user may create their own
Document Templates which are Word based templates referring to a TemplateType.

2.1 Installing DocumentGenerationForMendix
To install do the following:
e Download the DocumentGenerationForMendix module into your project from
the app store (Import modules from the App store)
e Add the TemplateManager module role to your administrator user role
e Add the TemplateUser module role to your end user user roles which may use
the templates
e Addthe ACT DocumentGenerationForMendix OpenLicense and
TemplateConfiguration Overview to your admin navigation (USE ME /
Add to admin nav). See figure 1
e Addthe ASU DocumentGenerationForMendix ActivateLicense to
your After Start up microflow (Project settings). See figure 2 & 3

5 f Project Setti o X |
v © f DocumentGenerationForMendix bt
Corfiguratons [ALFAInE | Modeler Langusges Ceficates Theme
© 5 Domain model < rescurces fomdisk O Yes @ No
Wit seting is enabled. st resources il be oaded from the disk cn your mobie
. This speeds
© &, Security
Opsmize netvorkcalls © Yes O'Mo
© [5] _Version 5.5 - Mx 7.23.10 -20200319 e satiais satlod o i o s o ctce b st oo
metwork 1o Wﬂcamuuﬂm« Thes speeds up your agp signicantly aM
sho.ldbeaub!ed aﬂl» n case of causing an issue.
?> © [3 Examples Al stactop [Expenses MerRatlh Select.. | | Show
o Tefere Sk = T |
> © Private Heslth check rene) Select. Show
o First day of the week Defaut pased on locale) N
v © [5] USEME =
Default time zane fnone) el
—_ . NOTE Existin
> © Actions to use s asicancn T o
- Scheduled event bme zome | UTE S
v o Admin screens Hash aigvithen T =
\ : . Round numbers. ® Half sway bom zero (O Half 1o the nearest even number
© (&) ACT_DocumentGenerationForMendix_Openl] " ”: Y

Examples.
fw i sere Stacores Jard 15 h‘w_ 7 Venromangtai perewatonn |
X Sbacomes 203 55 becomes
© [APIKey Overview

Mutiple sessions pec user @ Yes O No

) s seting is ersbled g e bmes rough et hent (o5
1+ E SN_APIKey_Overview and tatie) NOTE. I proce works with icenses besed co
concutert uaers
Uniqueness validation @ Runtime () Database (recommended)

4] ! i ion i
(=) S e R D s oot s o it b
NDM!e instead of in the Runtime. To prepare your 200 for the new default. sdec
m

© |7 TemplateConfiguration_Overview

o

>] LayouTs

Figure 1 Figure 2

ASU_ActivateLi
¢ Create Default » r“\ Start App » r“\ cense_Docume
O_’ \?J Data kJ Cloud Services kJ ntGenerationFo > O
rMendix true
Boolean

Figure 3

Document Generation for Mendix 4

https://docs.mendix.com/community/app-store/use-app-store-content-in-the-modeler

It is highly recommended to avoid making changes in the imported modules (also a best

practice in general). Not making changes will make sure that you can install future

updates. So, you probably do not want to use the DocumentTemplate Overview

(USE ME / Add to user nav), which is just there for demo purposes. The main reason for

not using this, is that you want your own security applied to document templates and

extend it with own functionalities. To create the optimal solution, follow these steps:

Create a CustomDocumentTemplate object in one of your own modules and
inherit from DocumentGenerationForMendix.DocumentTemplate.
Configure the access rules how you want them.

Create an overview and new_edit form for this new object.

Add the DocumentGenerationForMendix / Private / DocumentTemplate /
PageResources / SN_DocumentTemplate to this new_edit form. This snippet will
allow your end users to upload a Word template and see which fields they may
use in the template (see figure 4). Note: do not make changes to SN_
DocumentTemplate but copy the content of SN_ DocumentTemplate to your
created new_edit form if you want to make changes.

Add this page to the navigation for admin

@ 5 DocumentGenerationForMendix

© s Domain model

@ € Security

© [F] _Version 5.5 - Mx 7.23.10 -20200319
> @ [5] Examples
v @ [7] Private

> © [T] APlkey

v @ [7] DocumentTemplate

> © [7] Microflows

v @ [7] PageResources

(+] SN_DocumentTemplate

[+] SN_DocumentTemplate_Details
[+] SN_DocumentTemplate_History
v © [3] Pages

@ [DocumentTemplate_NewEdit

- —

Figure 3

Document Generation for Mendix

2.2 Using the action SimpleMerge

The SimpleMerge uses the data that has been retrieved, but when there are multiple
records in a list you will need to configure all the fieldnames individually. That is
acceptable if you know that there are a few records in the list, but when you don't you
probably will miss some data in your output document. To prevent omitting data on the
output document, we recommend using the Java Action AdvancedMerge.

Setting up the Mendix application for generating documents with the
SimpleMerge

To create a document with data from your Mendix application, first you need to create a
new record in the CustomDocumentTemplate object. In the installation step you created
a custom page for this object.

You need to fill in the following:

e Templatename: choose a name for the template
e Upload Word template: here you can upload the Word template.

For the Word template open a new Word document and add a field you want to fill, for
example: Name. Save this document and upload it.

J—

—_ . . Field 2
= B Signature Line ~
— Please chouse a field Field properties. Field options
I Caregoris isld name: [0 et to be inserted before:
) s

Text | Quick | WordArt @ Date & Time

[0 Text to be inserted after:

g Box v |Parts v A E] ObJeCt - [Mapped field
[0 Vertical formatting
#n AutoText >
[& Document Property >
= Feld...

|Z} Building Blocks Organiser...

B Preserye formarting during updates

Description:

[Eﬂ Insert a mail merge field

Field Codes ok Can

Figure 4 Figure 5

After saving the DocumentTemplate, an action button needs to be created on the
overview page of the object containing the data for the document. The microflow
behind the button must contain the following actions:

e Alist of the data (Mergedata)

e Retrieve of the DocumentTemplate

e Create Mergelnput

e Create Output (‘Name’ should include the extension of your final document)

e SimpleMerge java action

e Optional: download file

Document Generation for Mendix 6

Example:

Call Microflow

Action

Microflow DocumentGenerationForMendix CreateMergeDataAndA | | Select.. | Shaw

Edit parameter value

Name Type Argument
MergeDatalist st of Dorumentienerationf orMendix... | SMergeDataColumaList
NameMergeFieid string Name'

Value String Test gebruiker
Task Queue

CustomDocumentTemplate

CustomDacumentTemplate [Execute this microflow in a Task Queue

Output
Retum type Nething
=
=] o
__ Create list of S— __ Create _ Create . _ Download file
O—p () MergeDataColu gel i) Mergeinput ————= () DemoOutput = (5) SimpleMerge ——— () NewDemoOutp —po
AndAddToList (
mn (OutputType) (Name) ut o)
o o
NewMergelnput NewDemoQutput RetumValueName
List of MergeDataColumn Mergelnput DemoOutput Boolean

Figure 6

As you can notice we create a list of the MergeDataColumn. In this list we add all the
data we need for the document output. We do this with the microflow
CreateMergeDataAndAddTolist, which can be found at DocumentGenerationforMendix
-> USE ME. Of course, you can also create your custom logic and custom object to do

this.

Document Generation for Mendix

2.3 Using the Java action AdvancedMerge

The AdvancedMerge allows the use of records in a list, without naming the fields for
each record in the list individually.

Setting up the Mendix application for generating documents with the
AdvancedMerge

As an administrator you have to configure the TemplateConfiguration(s).

First create microflows for the objects that you need in the template, as in the following
examples. You always need to return the object in a list.

Below the microflows we used for this example:

Left is the microflow for the
Invoice table. As you can see

Invoice

Invoice

it does not retrieve anything
from database (you could do
that as well of course) but it
Someinet | s just passes its 'in‘put |
. S parameter. This is because in

et e this model the Invoice Object
Figure 7 is already available within
your Export microflow and
you want to pass it instead of
retrieving it again (which can
be hard if there is no context).

Invoice . . .
Invoice This microflow is for the

second table and retrieves
the Invoicelines list from
database related to the input
Invoice.

Retrieve list of
() > @ InvoiceLine by
$Invoice/Invoice ’ O
Line_Invoice $InvoiceLineList
InvoiceLineList List of InvoiceLine

List of InvoiceLine

Figure 8

Document Generation for Mendix

For a better understanding of why there is a difference between the microflow, a
screenshot of an example domain model is added below.

>
Invoice

InvoiceNumber (String)

Invoiceline_lnvoice

Invoiceline

Name (String)
Price (Decimal)

Figure 9

After login go to the TemplateConfiguration_Overview which you added to the

navigation. The example template is shown below:
Template Configuration

Edit Template Configuration

Template Configuration Tables
Name
. Mew Edit Delete
invoice
Invoice
InvoiceLine
Figure 10

Within a template two things are configured:
e Table
e Merge Field

Table

A

Tto2of2

Microflow

MyFirstModule DSL_Invoice

MyFirstModule.DSL_Invoiceline

Fields - Invoice
New Edit Delete
Generate all available fields
Name

InvoiceNumber

A table contains all data that has been retrieved by the microflow for that table. The

table is shown on the left side of figure 5.

e Alias: this is the alias end users have to use in the Word template indicating a

TableStart of TableEnd

e MF Name: This is a reference to a microflow that should return a List of records

for the table (maybe just one record, but it should be in a list). The microflows

are called by the Merging module. So, you don't call them yourself, just refer to

them from the template based on the TableStart:alias construction.

Document Generation for Mendix

A

1to1of1

X path

InvoiceNumber

Merge Field

The data within a table can be configured as Merge Fields (FieldMappings). After adding

a table just click the table and add Merge Field mappings in the list grid. A field
mapping has the following properties:
e Name: this is the alias end users must use in the Word template indicating a
Merge Field.
o XPath: N-deep path to the domain attribute relative to the Table (use the
modeler (data grids) to help you creating this paths)
e Render as HTML: if the attribute contains HTML and you want to render it as
HTML click the check box
e Formatting: custom formatting for dates and float/currencies based on Java
SimpleDateFormat and DecimalFormat. Examples are: ‘dd-MM-yyyy’ for
datetimes or '###0.00" for currencies with thousand separator.

You will find later in this document in chapter 2.4 or 2.5 how to create a
DocumentTemplate and in chapter 2.6 how to generate a document.

Document Generation for Mendix

10

http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html
http://docs.oracle.com/javase/7/docs/api/java/text/DecimalFormat.html

2.4 Setting up the MS Word template inserting the merge field manually

Before you can generate a document with the DocGen module, a document template is
necessary. You'll find an example right here: invoice template. As you will notice in the
example, the document contains ‘TableStart’ and ‘TableEnd’, and are only necessary in
the template when the javaAction: AdvancedMerge(XML) is used in the Mendix
application. The AdvancedMerge is commonly used when multiple row tables are
needed. For example, you need additional data that needs to be retrieved over a one-
to-many association. This will result in a list, therefore an extra table with rows is needed
to display the data.

These templates all have the same things in common:

e They contain the concept TableStart:Container. This is always required for
technical reasons. Every table is closed with TableEnd.... In this example template
we have two tables for retrieving data: Invoice table and InvoiceRows table.

e They contain merge fields. To create new merge fields you can copy existing
merge fields. Be sure to edit them in the right way (right click: Edit Field, then
edit the field name). Typing directly will just edit the alias and not the technical
name, unless you have the fields displayed with their technical names. OR follow
these steps: insert FieldCode and choose in the Field names column: MergeField.
In the Field properties under Field name type in the name of the MergeField.

After the TemplateType and Word template have been set up, a DocumentTemplate
record needs to be created. You need to do this on the page
DocumentTemplateOverview. In the overview you will see the following:
e Templatename: choose a name for the template
e Template type: here you can choose the template type you configured on the
TemplateOverview page. When chosen you will see below the tables related to
the template
e Upload word template: choose the Word template for this Document template.

Document Generation for Mendix 11

https://appronto-docgen.s3.eu-central-1.amazonaws.com/InvoiceTemplate.docx
https://support.office.com/en-us/article/insert-edit-and-view-fields-in-word-c429bbb0-8669-48a7-bd24-bab6ba6b06bb

Below an example, where Alt+F9 is pressed in Mendix so you see the technical names:

{ MERGEFIELD TableStart:Container * MERGEFORMAT H{ MERGEFIELD TableStart:Invoice }

L)
N
F=) Invoice

{ MERGEFIELD Date }

{ MERGEFIELD InvoiceNumber }

Items Ordered:

{ MERGEFIELD S{ MERGEFIELD Price }{
TableStart:Invoiceline MERGEFIELD
MERGEFIELD Name } TableEnd:InvoiceLine *

MERGEFORMAT }

Thank you for your purchase

{ MERGEFIELD TableEnd:Invoice }{ MERGEFIELD TableEnd:Container * MERGEFORMAT }

Figure 11

Edit Custom Document Template

Default Information

Template name AdvancedMerge|

Description
Template configuration invoice

Upload Current
Word Browse... Download version
Template

History

Version Changed

No items found

Save Cancel

Figure 12: Uploading the document

Document Generation for Mendix

12

2.5 Using the Document Generation for Mendix MS Word addon

The DocGen addon for MS Word gives the opportunity to create a Word template to
drag and drop. Please keep in mind that a TemplateConfiguration and a
DocumentTemplate already must have been configured. You can upload an empty
Word template in the DocumentTemplate.

The following steps must be done to have the addon work properly:

e Add the APIKkey_Overview (can be found at in the
DocumentGenerationForMendix -> USE ME -> add to admin nav) to your admin
navigation.

e In MS Word you will need the install the add-on: go to the tab Insert -> Add-ins
-> Store. A pop up will follow. Type in Mendix in the search field and hit enter.
The add-on will be displayed. Click on the Add button. In the Home tab there
will be a new icon on the right of the ribbon:

4

Show
documents
When clicking on the icon the window Document.. . below will appear on the right
side of the screen.
Document generation Vo e The application URL can be
found under your application
With this addon for MS Word you can Buzz -> Deploy ->

cg:hect to ycrn\;g menji: appllicf[atio:f:or Environments

; c!mlg?t?:‘:s ::onfigucr];tioir?c?ras:; rityer ¢ The APl Key needs to be

you can view, change and save your generated. You can do this at

templates directly from this addon. the APIKkey_Overview and
create a new one. Copy this key
in the API key field in Word.

e Click connect and you will see
your configured templates.

F I andatory inrormati
tO connel Tele) 1l
Application URL

https:/iyourapp.url

APl key Now you can start building your Word

your-api-key template.

Don't have a URL and APl key? Get a
demo, purchase or learn more about
our services and send us an e-mail:
products@appronto.nl

Document Generation for Mendix 13

Once a template has been selected, the tables related to the chosen template will be
loaded and shown. By clicking on one of the table names, the fields of the table will be
shown (these are the tables and fields configured in the TemplateType Overview
Administrator page). By placing the cursor on the preferred position in the document
and then clicking on the Fieldname, a mergefield with the name of field will appear in
the document. Keep in mind that the Word template must contain the
Tablestart:Container and TableEnd:Container. And every Fieldname must be place within
the TableStart and TableEnd of the table it belongs to. This can be done easily by
clicking on the “Insert default structure’ button.

After the Word template is fully customized with the Fieldnames, just click on the ‘Save
template to your application” button. This will automatically upload the customized
Word template to the right template in your application.

Before use

Disable cloud security in your run configuration (this is only applicable for apps
running in the Mendix cloud v3). This is because the Aspose Module needs certain
privileges which are not granted by default by the Mendix cloud. So when you are going
to run this in the cloud as well, please file a ticket to (“java.lang.RuntimePermission”

“preferences”).

To generate an output, there must be a button or microflow action that generates the
output. There is an Example microflow in DocumentGenerationForMendix / Examples /
GenerateAdvancedMergeExample. To create a very simple test just:

e Add a microflow button to the CustomDocumentTemplate_Overview grid which
calls this example microflow. Note: do not forget to update the
GenerateAdvanced-MergeExample with a RootContextObject if you're
expecting one in your root document tables!

e Restart your project

e Login as an end user and create a CustomDocumentTemplate. Upload your MS
word template (see attachments for example) and select the corresponding
template type.

e Save it and click the Generate button from the overview.

e Getting errors? Enable logging for DocumentGenerationForMendix log node to
trace level.

The microflow that generates the output must contain:

e Create Mergelnput parameter. This is needed for the AdvancedMerge Java
Action. You have to set the desired output type (Word, PDF, HTML, BMP,
and so on)

e Retrieve a template.

e Call the AdvancedMerge Java action. All parameters are pretty clear from the
context. The RootContextObject is not required but if empty nothing will be
passed to Root Table microflows.

Document Generation for Mendix 14

2.6 Generate a document via AdvancedMerge
To generate a document with the data from the selected record, a microflow action
needs to be created. It will need at least the following actions:

e Retrieve TemplateType

e Retrieve DocumentTemplate

e Create Mergelnput

e Create Output

e AdvancedMerge java action

Invoice
Invoice
Retris Retri ¥
rieve rieve
Create Create Download file
/oy CustombDocume =, TemplateCanfig ~ . —
O—»(ntTemplate from (8 uration by o :(’I;‘rlgeu\:\rut) () :)’:arr:e?ulput) Advancedherge ——— (G :ewDemuUu(p
database @ SCustomDocum g
TemplateCanfiguration Newhergelnput NewDemaOutput RetumValueName
TemplateConfiguration Mergelnput DemoOutput Soalean

Figure 13

Document Generation for Mendix 15

2.7 Using the Java action AdvancedMergeXML

The AdvancedMergeXML action generates documents based on data from an XML file.
Setting up the Mendix application for generating documents with AdvancedMergeXML
When using AdvancedMerge there is no need to configure a TemplateType because
there are no microflows needed to collect the data. In this case the XML file contains the
data for the output document. Like the AdvancedMerge a DocumentTemplate needs to
be created. Just like with SimpleMerge only the ‘Templatename’ and ‘Upload Word
template’ parameters need to be filled in. The structure of the Word Template resembles
the one of AdvancedMerge: it must contain a TableStart:Container and
TableEnd:Container.

In the XML example below we have used the same domain model structure as for
AdvancedMerge. There is also another example under DocumentGenerationForMendix-
>Examples

Notice that the XML also contains d Bl Tereten=il 0 e =
2 <Container:>
<Container> and </C0ntainer>. 3 <documenttemplate>invoice</documenttemplate>
4 <Table>
5 <Name>InvoiceTable</Name>
B <Row>
The XML structure must resemble 7 <Field>
. . 8 <Name:>Name< /Name>
as if you retrieve data through a g <ValuesMr. Roks</Value>
. 0] </Field>
microflow as for the o <Field>
12 <Name:=Adress</Name>
AdvancedMerge' 13 <Value>0On The Hills 18</Value>
14 </Field>
15 <Field>
At the beginning of the XML file, 16 <Name>Mail</Name>
. 17 <Value>find@me.com</Values
ou need to specify the 18 </Field>
y pecity
. 19
DocumentTemplate name in an 20 <Table>
21 <Name>Invoicelines</Name:
XML tag. . Rows ’
23 <Field>
24 <Mame>Product</Name:
You see in the example that the -~ IR e
26 </Field>
tables are identified by a name. It 27 AElEan ,
. . 28 <Name>Price</Name>
is the same name as we use inthe 22) <Elue>20<fva1ue>
30 </Field>
Word template. The fields are also =1 </Row>
. e . 32 </Table>
identified with names followed by 3 </ Row>
34 </Table>

the values that need to be
displayed. The XML structure has
an abstract resemblance with the
AdvancedMerge way.

w
u

</Container>

You can choose to make an XML entity in your domain model and generalize it with
System.FileDocument or create a custom entity to work with. In this example we created
an XML entity with the generalization of System.FileDocument. To upload an XML file, a
page to upload the XML will be needed, see Import XML Document.

Document Generation for Mendix 16

https://docs.mendix.com/howto/integration/importing-xml-documents

To generate a document with the data within the XML file, a microflow action needs to
be created. It will need at least the following actions:

e Create Mergelnput

e Create Output

e Retrieve DocumentTemplate

e AdvancedMergeXML java action

Example:
[m| [m]
D){MLD
¥ML
Retrieve
.. Create .. Create Output — — _. -
() > ey (e /= DocumentTemn /7~ AdvancedMerg 7= Download file
\-h Mergelnput > \-h (OutputType, > \-rﬂ plate from —-»> L= e XML > '\@ MewOutput b o
(OutputType) Name) o
MewMergelmput MNewDutput DocumentTemplate Variable
Mergelnput Output DocumentTem plate Boolean
Figure 15

Document Generation for Mendix 17

3 How to’s

How to import the DocumentGenerationForMendix module
Please see Installing the DocumentGenerationForMendix module.

How to create a template for the DocGen module

To create a template, just create a Word document. For technical reasons, the
document needs to contain the MergeFields: <TableStart:Container> &
<TableEnd:Container>

See the invoice template for an example.

How to select the data for the document output

In the Template Overview page the microflow that retrieves the data must be
imported in the left column. When the microflow is selected in the left column, in the
right column the data from the microflow needs to be mapped to the fields. The
name of a field must be exactly the same as the name of the merge field within the
Word template.

How to set that the right data is used for the document generator action
In the microflow that will be called when generating a document, there should be a

Retrieve object action. In this Retrieve action the name of the template should be set.

How to set the output type

In the microflow call when a document needs to be generated, there must be a
Create object (Mergelnput) action and a Create object (Output) action. Within the
create Mergelnput action you can set the value for the member output. Also, in the
create Output object the value of the member output needs to be set.

Document Generation for Mendix

18

https://appronto-docgen.s3.eu-central-1.amazonaws.com/InvoiceTemplate.docx

How to render an image from the Mendix application to the generated
document

One of the methods is to convert the image to a base64 string after the retrieve. We
recommend using the java action (Base64EncodefFile) from the Community
Commons module. The return variable can be used as a value of an attribute that will
be used for a merge field. Your merge field should look like this «Image:Fieldname».
The microflow should look something like:

D
IteratorPlaaie

Retrieve list of ! Change
Create list of Base64Encode Add to list . Commit
— —- — ! —- " E : — " P
3y Plaatie from Plastje File o TR O Plaatjelist © PlaatjeList ’C)
database (Base64) ’
SPlaatjeList
Plaatje Plaatjelist ItPlaatie st ofPlaatje
List ofFlaatje List of Flaatje String

Figure 16

Another method is to use the ‘Alias: _Image_". For this method you will need to
refresh your MXReflex with the module System checked. The microflow that needs to
be used in the table should look something like this:

Retrieve list of

—® (3 Plaatie from —bo

database .
SPlaatje

st of Plaatje

Plaatje

st of Plaatje

Figure 17

The Fieldname should be set as _Image_ with as selected X path ‘Contents’. The
Mergefield should look like «<Image:_Image_».

Document Generation for Mendix 19

